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A IWW lWMJMlTON OF THE MULTICOMPOXETJT TRAmspoRT EQUAII?IohS 

Marvin E. Goldstein 
Massachusetts In s t i t u t e  of Technology, Cambr idge ,  Massachusetts 

I/ 

A new fonmrlatian of the  multicomponent boundary layer prob- 

l e m  which is convenient fo r  numerical eslculatians is  developed. 

This is accomplished by a modification of the  usual chapman-Enskog 

procedure which is intenaediate between +,;hat procedure and Grad's 

thirteen-moment method. The relations which are developed do not 

involve transport coefficients but mther expressions fo r  the 

gradients of the physical variables 8s linear combinations of the 

fluxes. The complete set of boundary layer equations turn out t o  

be a set of f i rs t -order  d i f f e r e n t i a  e q u a Z i a n s  and a set of sue- 

braic equations which are l i n e a r  i n  the fluxes, These expressions 

contain the averaged cross sections instead of transport coeffi- 

cients. 



c 

The method is  extended t o  include chemically reacting mixtures 

of polyatomic molecules. 

ther  extended t o  two temperature f luids  when one of the species has 

a smllmss and t o  mixtures where it i s  necessary t o  r e t a i n  higher- 

order terms i n  the  Chapmn-Enskog procedure i n  evaluating the co l l i -  

sion integration for  some of the species. 

It is  shown that the method can be fir- 

The r e s u l t s  are applied t o  the specific case of the stagnation 

point boundary layer. 
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I. IIJTROIWCmON 

In order t o  solve boundary layer problems with many species pres- 

ent, numerical techniques must invariably be used. The thermal con- 

ductivity and diff’usion coefficients appearing i n  the boundary layer 

equations are usually complicated functions of temperature and concen- 

tration.’ I n  the  cases where similari ty solutions exist ,  one usually 

trys t o  reduce the governing equations t o  a set of first-order ordinary 

d i f fe ren t ia l  equations plus a set  of algebraic equations. 

usual t o  neglect thermal diffusion i n  t h i s  procedure. 

It is 
1 

I n  this  report we have attempted t o  formulate the boundary layer 

problem with many species present i n  a way t ha t  is convenient for  numeri- 

cal calculations. To accomplish t h i s  we have modified the usual Chapman- 

E r ~ s k o g ~ ’ ~  procedure fo r  obtaining no& solutions t o  the  Boltzmann equa- 

t ion  for  monotonic gases which is presented i n  Eirschfelder, Curtiss, 

and Bird’ (heresf’ter shortened to  HCB). We begin (part 11) with the 

l i nea r  integral  equations for  t h e  f irst-order distributions flmction 

given i n  HCB, but instead of seeking solutions t o  these equations which 

are proportional t o  the gradients of the physical variables 

i n  HCB, w e  have chosen t o  start with a more general form of the solutions 

which we allawed t o  contain unknown vector W c t i o n  of the  fluxes and 

the physical variables (see eq. 2.7 and compare with eq. 7.3-29 of HCB). 

The first f e w  of these undetermined vector functions were then evaluated 

by substi tuting the solutions into the definitions of the heat and mass 

fluxes for the individual species. The result ing expressions were then 

* 
as was done 

.mc 

* 
i .e , the temperature, pressure, concentration, e t c  . 
e.g., the hest  flux moment of t h e  distribution Arnction 

Ylt 



. 
used t o  eliminate these functions from the solutions and thus t o  express 

the solutions i n  terms of the fluxes instead of the forces (i.e., the 

gradients of physical variables) as was done i n  HCB. 

t r a r y  f'unctions were then determined by subst i tut ing these expressions 

f o r  the solutions in to  the l inear  in tegra l  equations given i n  HCB for the 

f i rs t -order  distribution finctions,  then multiplying both sides of the  

result ing expressions by the  Sonine polynomials Of order 3 /2  and of arbi-  

t r a ry  degrees and integrating t o  match the coefficients.  

The remining arbi- 

* 

Af'ter using the orthogonality re la t ions f o r  the Sonine polynomials, 

t h i s  l ed  t o  a set  of equations which determine the  remaining unknown 

functions appearing i n  the  solutions. The f i r s t  few of these equations 

are expressions fo r  t he  forces i n  terms of the fluxes. The remaining 

equations are merely algebraic expressions which determine the unknown 

functions appearing i n  the solutions. 

the  first f e w  of these equations turn aut t o  be of a form i n  which the 

gradients of the physical quantit ies a re  given expl ic i t ly  as l inear  com- 

binations of the fluxes instead of being the otherway around as they a r e  

i n  the usual Chapmn-Enskog procedure. It is  f e l t  that t h i s  form i s  more 

convenient fo r  numerical calculations when applied t o  boundary layer  

problems than the usual re lat ions i n  terms of transport properties. 

The important thing here i s  tha t  

** 

These equations were then truncated (par t  111) t o  give the  usual 

f i rs t -order  approximtions i n  the  polynomial expansions. 

system of equations was then  rearranged and expressed i n  terms of the 

averaged cross sections. 

The truncated 

This procedure was used fo r  the heat t ransfer  

* 
i.e., by taking moments of the equation 

For example, compare equations (7.4-64) through (7.4-66) and equations 
(7.4-55) of HCB with equation (18.2) below. 

H 
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i .  

and difntsion par t  of the solution. "he shear stress was treated i n  

dTXst t he  S+&Rct31.d w-y, 'fic??ever 9 with ecly slight m,&.ificatio?l* 

The method used here is essentially iztermediate between Grad's 
6 moment method and the Chapman-Enskog procedure. A comparison of 

equations (4.7) through (4.U) with equations (3.8) and (7.2) through 

(7.5) of reference 6 shars that the form of the  result ing equations 

is quitesimilar. The principal advantage of this method over the 

moment method is  tha t  the  mount of Immipulation necessary t o  derive 

the equations is considerably reduced. This is due t o  the fact that 

we expanded Boltzmnn's equation in a uniformity parameter ( the r a t i o  

of the mean free path t o  a characterist ic macroscopic length) before 

any moments where taken. This resulted i n  a simpler set of equations 

which had t o  be carried through the calculations. Since the method 

is  closer t o  the Chapmnn-Ebskog procedure than the 13 moment method, 

it is easier t o  takf? over results which have been tabulated or  carried 

aut within the framework of that procedure which has been extensively 

studied. 

The method has additional advantages. It can be eas i ly  extended 

t o  two temperature fluids and t o  higher order ( i n  the polynomial expan- 

sions) for certain individual components while only retaining the lower 

order t e r n  for  a l l  the  other canponents. 

7 are present. 

This is usef'ul when electrons 

I n  order t o  tes t  the  method we have used the resu l t s  obtained i n  

this report t o  calculate the therm1 conductivity of a single-component 

gas and the binary dif-ion coefficient of a two-component isotherm1 

mixture (see Appendix B). These were i n  agreemnt with those given i n  Ha. 
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I n  Appendix C w e  have brought i n  the Eucken correction so  t h a t  the 

results could be extended t o  polyatomic gases. This was accomplished 

by comparing the resul ts  obtained here with those of reference n a n d  

then noticing that it was necessary t o  add a term t o  the expression for  

the heat f lux i n  order t o  make them agree. 

Finally i n  Part IV these resul ts  were applied t o  the formulation 

of the general boundary layer problem of a mixture of reacting gases. 

These resu l t s  of Par t  I11 were extended t o  gases with internal  motion 

and chemical reactions i n  the usual way. 

are written as a set of first-order d i f fe ren t ia l  equations plus a set 

of algebraic equations which a re  l inear  i n  the fluxes. 

are i n  a more convenient form for  numerical calculations than those 

which would be obtained by using transport coefficients. 

case of the stagnation point boundary layer was treated i n  de ta i l .  

The buundary layer equations 

These equations 

The specific 

Many of the resul ts  used below are taken over direct ly  from HCB. 

When t h i s  has been done the i r  notation has been used without explana- 

t ion,  but the relevant equation numbers a re  given. 

c 
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11. GENEBAL mTMuLATIor7 

I n  t h i s  section we develop an'kxsct"so1ution t o  the l inearized 

Boltzmann equation for a multi-component mixture. The solution is  i n  

such a form that the forces (i.e., gradient of t he  properties) are 

expressed as a l inea r  combination of the  fluxes. 

W e  begin with equation (7.3-26) of HCBl for t he  p r t u r b a t i o n  f'unc- 

t i on  $. which is: 
1 

r - 

where the gi's are related t o  the purturbation i n  fi by 

If we define 8. by: 
1 

* 
The equation f o r  Bi must be: 

* 
See HCB p. 469 for details. 
for  species i and 

(f!') is the  ryiaxwellian dis t r ibut ion finction 
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Multiplying both sides of t h i s  equation b y y i  Sr(Wi) 2 (where Sr(Wi) 2 is  

the r ' t h  Sonine Polynomial of order 3/2 and argument W . )  2 *  and integrat-  
1 

ing with respect to  xi, we get: 

n a I-nT v. w. (3  5 - Wi) 2 s r 2  (Wi) gvi - n -i d *Jf!') 1 A 1 - 1  V. W. Sr(Wf) $Vi - - a r  *f.ro) el-1 i u 

where we have used equation 4 of section 1.42 of Chapman and Cowling 4 

and def ini t ion (7.2-11) of HCB t o  get the last relat ion.  

Final ly  by using the  relat ions (7.3-58) and (7.3-59) of HCB (i .e. ,  

the  orthogonality re la t ions for  t he  Sonine Polynominials), we arr ive at: 

2 t t 
Sr(Wi) (ei + Q j  - Qi - QJ) gij bdb da dV. dV 

-1 -j 

where 8, is  the  kronecker del ta .  

of equations (7.3-29), (7.3-35), (7.3433, and (7.3-61) of HCB s h m  

that the  ei must be of the form: 

Examination of equation (2.3) and 

* 
Note tha t  Sr is designated by Sr i n  Hm. 3/2 

c 
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where 4 n is independent of zi . 
4 1  

-om equation (2.3) and equations (7.3-29), (7-4-1), and (7.4-2) 

of HCB, it follows that: 

n. V. = V. Qi fi (0) dJi 
1-3. - 

Substituting eq. (2.7) in eq. (2.8), -we get: 

From equation (4.2) of section 1.42 of Chspman and Cowling and definition 

(7.2-ll) of HCB, we get: 

* 
and finally from equation (7.3-59) of HCB, we get 

1 -1 

or 

Now the part of the translational heat flux vector due to the i ' t h  species, 

is given by: 

V. f .  dV. 
1 -1 1 Y 

while the total  heat flux vector q is: 
d 

(2.10) 

* 
i .e . ,  W e  have used the orthogonality relations for the Sonine polynomials. 
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c 

(2.11) 

We now have: 

m . ( g )  3 /.. f!') 0i d - i  - 
= T  i m  -1 1 i 

*) /.. f fo)  0i dV. 
"1 -1 

= q m _  
1 

- - 1 1  - m.(-) 2 k T 3  C eCn /.: fro) S1(W?) Sn(W2) dW 
1 4 n -' 1 3 2 i m i  

Finally using equation (2.8) and equation (7.3-58) of HCB, we get: 

- 

-i 
q. = - n .  5 k~ 
u'1 2 1 

(2.12) 
-I 

W e  now notice that since 8 .  (as given by eq. 2.7) is  an odd f'unc- 
1 

t i o n  ofJi, the auxi l iary condition given by (7.3-18) and (7.3-X)) i n  

HCB are ident ical ly  sa t i s f ied ,  and the auxiliary condition (7.3-19) is, 

by equation (2 .9 ) ,  equivalent t o  the condition: 

d 

(2.13) 
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A f t e r  substi tuting equation (2.7) in to  equation (2.6,, we arr ive a t  

( 2.14) 

bdb de dV. dV (2.15) -1 -j . gij 

In Appendix (A) we have shown t h a t  

,-1j I. (r i ") j [s'(w2) i -5' w S"(w2) 3 -3 w] i S  (2.16) 

1 Where U is the unit  tensor, the  terms multiplying - U on the right-hand 

side of equations (2.16) and (2.17) are  defined i n  Chapman and Cowling 

section 4.4 by equations (4), ( 5 ) ,  and (9) or  more specif ical ly  by (1) 

i n  section 9.3. 

s 3 =  

Substituting equations (2.16), and (2.17) in to  equation (2.14) yields: 



-10- 

Equations (2.18) consti tute a J-fold i n f i n i t e  set of equations where 

J i s  the  number of species i n  the  mixture. 

constants 5; . 
the 5: are vectors; therefore, there is actual ly  a 3-J fold i n f i n i t y  

of scalar equations. Equations (2 .9 ) ,  (2*11), and(2.12) relate the  first 

two of the 5; t o  the fluxes, and equation (2.13) adds an additional 

res t r ic t ion  on the  < n t s .  

These determine the  J x 

It should be noted t h a t  these are vector equations since 

1 

The S n I s  of  equations (2.18) are flux-like quantit ies.  I n  fact 
1 

1 the s p t s  are the miss fluxes,and the  s i t s  are the conduction heat fluxes 

of the individual species. The terms on the l e f t  s ide of these equations 

are the forces (or  potential  gradients) .  These equations are i n  the form 

of a set of Tirst-order d i f fe ren t ia l  equations plus a s e t  of l inear  alge- 

braic  equations with all the der ivi t ives  appearing on the  left-hand side. 
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111. FIRST-OlUER AF'PROxlMATION 

r -l 

T L~ tkis SZC%.DE ~e ~kii t,--;-,ate t h e  i n f i n i t e  SP,% of ~ q 1 - t . i ~ ~ ~  (2,181 

and proceed t o  rearrange and simplif'y the  resul ts .  

obtained are written down i n  terms of average cross ections (a k'2 

HCB's notaticm) which a re  tabulated fo r  various molecular potentials.  

The equations finally 

(k 1) in 

A camparison of this formlation of the problem (equation (2.18) with 

0 that of HCB shows that it iE necessary t o  re ta in  the terms involving 4. w . 1  

.. 
and sr i n  order t o  get the usual first  approximation for  a l l  transport 

coefficients. 
* 

We therefore retain only these terms, and we are lef t  with 

a set of 2 x J equations (2.18) which are: 

* 
To th i s  approxiustion a l l  cross coupling effects  such as thermal diff'u- 
sion are retained. 
cients quite accurately. 

This approxination usually gives the transport coeffi- 
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Where we have used eq. (2.9) t o  eliminate 5 0 i, and we have intro-  

duced t h e  quantity Ti defined by 
c1 

Using equations (7.A-1) through (7.A-9) of HCB i n  equations (3.1) 

and (3.2), we get 

Where pij is the reduced mass defined by 

1 1  
m m 9  - + -  1 - =  

Pij  i j 

the set of equations (3.5) a l l  contain a temperature gradient on the left-  

hand side. Since, however, algebraic equations are more convenient than 
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d i f f e ren t i a l  equations, it w i l l  be convenient t o  replace equations ( 3 . 5 )  

by 8 sicgle 83fferential equation plus a s e t  of l i nea r  algebraic equa- 

t ions .  I n  order t o  accomplish t h i s  we proceed as follows: 

Multiplying equation (3.5) by ni and summing on i, we get upon noting 

c49k) = and pij = pji that Qij j i  

or 

L 

( 1 9 1 )  2 
J -J (mi + 1 m.) I PijQij 

m. 
2 

+ 2 c x n.n.(miTi - rn2T.l [ 
= J  c) 

J 
i j  

where the density p is given by 

p = x n.m. 
i 

between equations (3.7) and ( 3 . 5 ) ,  we get 15 d l n T  Eliminating kT - 

1 1  

a.3 
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B y  multiplying both sides of t h i s  equation by ni and using the Kronecker 

delta, we get a f t e r  introducing different dummy indices: . 

Introducing the mass f l u  of the i ' t h  species j defined by i 
- 

j .  = n. m. V. 
-1 1 3.01 (3.9) 

the  mass fraction of the i ' t h  species c. defined by 
1 

c i = ni m i / p  (3.101 



. 
and p. defined by 

-1 

We have: 

(3.12) 
Equstian (3.4) can now be written as: 

* 
It w i l l  be convenient t o  introduce di defined by: 

and we have from equation (3.13) 

(3.13) 

(3.14) 
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Equation (3.7) can now be writ ten as: 

From equation (2.11), (2.121, (3.91, and (3.101, we have 

(3.18) 

and from equations (2.13) and (3 .9 )  we get 

j . = O  
- J  

j 

It is now convenient t o  define the following quantit ies 

1,2) - 5&1) 
2 j.t ) (3 .19 )  34 

= 2 - -  
Ai j w f 2'8 j i  J 
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Using these definit ions we can rewrite equations (3.l2), (3.15), and (3.16) 

as: 

These relations (eqs. (3.24) t o  ( 3 . 2 6 ) )  a re  the desired resul ts .  j . is 
4 J  

the mss flux of the j ' th species whereas jj, which has the dimendions 

of a mss flux, i s  a quantity which, when m l t i p l i e d  by the energy per 

unit  mss, corresponds t o  a conduction heat flux of the j ' t h  species. 

, Up to now we have not considered the viscosity. It is, hawever, 

convenient t o  take over the relations needed t o  calculate the  viscosity 

d i rec t ly  from RCB. F r o m  equation (7.4-56) of HCB we nay write 

I 



where 

From equation (7.4-57) of HCB we can write 

Gij  xj = 1 
J 

where 

or from equation (7.4-62) of HCB 

(3.29) 

and substi tuting equation (7.4-63) of HCB i n to  equation ( 3 . 2 9 ) ,  y-j.2lds 

Equations (3.31), (3.29), and (3.27) now determine the viscosity 

The reason we have resorted i n  terms of the weighted cross sections. 

here t o  the usual formulation (or a s l i gh t  modification of it) is because 

the shear stress is d i rec t ly  proportional t o  the  velocity gradients; hence 

the  velocity gradient can be written a s  the reciprocal of the viscosity 

times the shear s t ress ,  which i s  of the same form as equations (3.25) and 

(3.26). In  order t o  bring the s e t  of equations f o r  the viscosity in to  the 
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same Tom as the s e t  (3.24) through (3.26) f o r  the heat flux and diffu- 

sioIL, ii U;&t be ~oyl-~enient  A^ .....+.-......,.lr,C, +Le ...nrrkl,-.rr 
b U  J . C I U I I l I U d & b U C  UUC p A U U & L U  %= sb",Tn 

analogous equations t o  ( 3.27) and (3.29) for  the  reciprocal of the 

viscosi ty  (i.e., equation (3.2'7) would be replaced by an equation o.? 

t he  form 1 = c c .  p.) ,  but a t  present it does not seem that the a d s -  

t i o n a l  labor is jus t i f ied .  
J J  9 J  

The resu l t s  ob"&ined s o  far  a r e  valid for  sin&le temperature 

monotoaic gases only. They are, however, a good approximation for  

s in s l e  ternperature polyatomic gas mixtures wi th  one excepti-on; t ha t  

'is, equat ion  (3.17) must be mdif ied t o  take in-to accounfu the in te rna l  

riotion. In  order t o  accomplish t h i s  t w o  things clust be done. F i r s t ,  

5 m  
j 

2 m  the  translation enthalpy of species j ,  (- -), which m l t i p l i e s  j i n  

equation (3.17) must be replaced by the to-1 enthalyy ( t ranslat ional  

p1u.s internal)  of species j and second, a term must be added which takes 

-j 

i n to  account the Zhcken correction. This i s  carried out i n  Appendix C. 

:.!e have shown there tha t  the t e r n  

mst be added t o  equation (3.17) i n  order t o  bring i n  the Eucken correc- 

t ion  where f is given by equation (C-9) and (C-10). 
Y 

If one of the species present is electrons, it might be desirable 

t o  take i n to  account the possibi l i ty  that the  electrons a re  a t  a differ- 

en t  temperature than the  rest of the species. This caa be accomplished 

when the  isotropic part of the electron dis t r ibut ion function is  approxi- 

mately Maxwellian i f  the  terms of the  order of the square root of the  



electron-heavy par t ic le  mass r a t i o  a re  neglected i n  the  electron-heavy 

par t ic le  coll ision integrals .  In  t h i s  case the  quation (2.1) for  the  

electrons w i l l  involve a different temperature than the heavy par t ic les .  

Because of the  decoupling e f fec t  of the  mass r a t i o  expansion, however, 

the solution can be carried out i n  exactly the  same -way as was done 

above. 9 

It can be seen from equation (2.18) t h a t  i f  it is  necessary t o  

re ta in  more terms i n  calculating the co l l i s iona l  e f fec ts  of say species 

1 with i t s e l f ,  

orders i n  n and r which appear i n  the terms where i and j a r e  both one. 

This w i l l  bring i n  additional &: 's,  but there w i l l  a l s o  be an additional 

algebraic equation for  each additional OC 

higher order i n  the  polynomial expansion of one of the species i s  t o  

* 
it is only necessary t o  r e t a in  those terms t o  higher 

LT 

n 
1' Thus the e f f ec t  of going t o  

increase the  number of 5 ' s  referr ing t o  that species and t o  increase 

the  number of equations by the same amount. 

* 
This corresponds t o  retaining higher-order terms i n  the  polynomial 
expansions i n  the  Chapman-Enskog procedures when evaluating say the 
electron-electron col l is ion integrals .  
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IV .  'EB BOUNDARY LAYER PROBLEM 

@e shall now proceed t o  formulate the complete boundary layer prob- 

To these l i n e a r  alge- l e m  using the  relations which were derived above. 

bra ic  equations and the first-order d i f fe ren t ia l  equations, we now must 

add the conservation equations t o  get a complete set. We shall rewrite 

the conservation equations i n  the form of a set of f i rs t -order  differen- 

tial equations i n  the coordinate n o m 1  t o  the flow. 

right side of these equations will involve a convective derivative. 

the cases where s imilar i ty  solutions exist, t h i s  convective derivative 

becomes a f i rs t -order  derivative i n  the s imilar i ty  variable. 

t i ves  appearing on the  right-hand side can then be eliminated by using 

the flux equations. 

f i c  example--the stagnation point boundary layer. 

be the same fo r  any s imilar i ty  boundary layer.. 

The terms on the 

In  

These deriva- 

This procedure is i l l u s t r a t ed  by considering a speci- 

The procedure would 

I n  cases where no similari ty solutions exist ,  it may be desired t o  

expand the  solutions t o  the boundary layer equations i n  a power series 

i n  the coordinate i n  the  direction of flow. If t h i s  is  done the convec- 

t i v e  terms on the r ight  w i l l  again yield f i rs t -order  derivatives i n  the  

coordinate normal t o  the flow which can be eliminated as i n  the case for  

s imilar i ty  solutions. Thus i n  both cases we obtain sets of l i n e a r  alge- 

braic  equations and first-order d i f fe ren t ia l  equations w i t h  each differen- 

t i a l  equation containing only one derivative. 

I n  t h i s  formulation the  effects of chemical reactions and in te rna l  

molecular structure w i l l  be taken in to  account i n  the usual approxiuate 

way; that is, we shall add t o  the continuity equation a source term Wi 

where: 
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Oi mi 
- m = (& 
i chem. react.  

5 k T  
2 m; and replace the t ranslat ional  Enthalpy - - of the i ' t h  species by hi, the 
i 

translational plus internal  enthalpy of the i ' t h  species, i z l  the  appro- 

pr ia te  places. 

The t o t a l  enthalpy of a l l  species h is  then given by: 

h = ci hi 
i 

Then under the boundary layer approximtion: 

j . = j j i , [ i = j e i ,  4 A q = j q ,  I? s O = i u + T v  A 

-1 v1 
(4.3) 

A A where i is  a unit  vector i n  the x-direction and j is  the uni t  vector i n  

the y-direction; where x is i n  t h e  direction of flow and y i s  perpendicu- 

lar t o  the boundary. si, which is  defined by equation (7.3-26) of HCB, 

now becomes : 

n 

-1 J Y  n 
n a  d. = J - (1) , 

and, therefore, from equation (3014)~ we have: 
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Using the resul ts  of Appendix C (Eq. C - l l ) ,  equation (3.17j can be 

written as 

where e. is given by equations (C-9) and (C-10) 
J 

Since p = nk!T and 

C n i - = E  - - , w e h a v e  P i 1  m. 

Now using equations (3.24) through (3.26), (3.?7), and (3.29) and equa- 

t i o n  (3.18), we can write dawn the boundary layer equations as follows: 
* 

% = 0 , 1  (4.7) 

(4.10) 

(4.12) 

* 
Ecpations (4.7) through (4.10) a re  merely the conservation equations 
simplified by the boundary layer approximations, and equation (4.11) is 
the relat ion between the shear stress and velocity gradient i n  the barndary 
layer. See, for  example, reference 10. 



J J J 

h = x  c h 
j j  j 

P = P T C  ;;;- k c  
i i  

1 = c  ci 
i 

5 

2 A . .  j.= B . . C  
j 1 J  J j 1 J  

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

where r is  the  distance from the center l i ne  t o  the  inner edge of t he  

boundary layer in axisymmetric problems, and 8 equals one fo r  zxisym- 

metric f l o w  and ze ro  for  plane flow. 

(4.11) are just the  usual boundary layer equations. 

a r e  given by equations (4.12) thraugh (4.15) and (4.19) and (4.20) 

Equations (4.7) through 

The new relat ions 

For 

‘convenience we have l i s t e d  the definit ions of the matrix elements Aij, 

Bij, D Eij, Fij, Gijy and H .  i n  Table 1. 3’ J 
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TABLEI 

Def--lition - of Matrix Elements 
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We now consider a special  case of equations (4.7) through (4.18) 

for  the stagnation point. 

conditions. We have 

Let the subscript s re fer  t o  the free  stream 

U = ax 

C = const. 

S 

is 

Ts = const. 

For t h i s  problem there exis ts  a s imilar i ty  variable 77 given by 

where b 

nomenclature, we shall use 7) (which has previously been used fo r  the vis- 

cosity)as the similari ty variable, and we shall designate the viscosity by 

i s  some constant reference quantity. I n  order t o  use the accepted 
0 

A .  

We have from the t o t a l  continuity and momentum equations (4.7) and 

(5.7) 
I 

u= U f ( q )  (4.22) 
S 

(4.24) 

(4.25) 

(4.26) 

t 
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and for a l l  equations after (4.2), we have 

= - p ( l +  8)afv d . 
p ,  

Equations (4.9) and (4.10) become 

- a(-s> = - [ b o a ( l t  %)I2 f dh 
d T  

(4.27) 

(4.28) 

(4.29) 

but 

A L 

and the specific heat of the i ' t h  species c is given by c = - . 
The total specific heat i s  c is  

Pi p i  dT 

P 

c = c ci cpi , P 

hence 

dT dci - = C  dh h i d r ) + C p j j  

dT 1 

Equations ( 4.12) and (4.13) become 

(4.31) 

and 



-28- 

(4.33) 

Substituting (4.33) and (4.32) into (4.31) and then substituting this 

into (4.29), we get: 

1 8b 
d(-q) = 2 f[x 2 Fij hi jj - - 2 d72 P 'i j 2 i  j 

Eij hi tj 

2 c T  P - -  (4.34) 

and substituting equation (4.32) into equation (4.301, we get 

+ + +  + Let us define q , ji, ci, andXi by 

4' =' - q/ [ a 0  + 8 )  bo 

E Ci/ [a(l+ 8 )  bo 3" , 
and we have upon collecting the results 

(4.36) 

( 4.37) 

(4.38) 

(4.39) 



. 
. 

-29- 

P, = P  

1=c 
i 

1 = c  
s 

J 

c h  
3 3  

C i 

Gij BTj 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

( 4.51) 

(4.52) 
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For t h e  frozen boundary layer we s e t  oi = 0 i n  equation (4.43). 

the equilibrium boundary layer ci = c 

s ide o r  equation (4.44) can be writ ten as: 

For 

(T) only. Hence the left-hand i 

dci dT 
dT cl77 
- -  

dT can then be eliminated between equations (h.44) and (4.45). The 
d 9  

+ + resu l t  is a s e t  of l inear  algebraic equations i n  ( 

doing t h i s  equation (4.43) can be dropped. 

and ji. A f t e r  i 
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v, SUMMARY 

I n  t h i s  report a modification t o  the usual Chapmn-Enskog procedure 

for  obtaining n o m 1  solutions t o  the Boltzmnn equation has been developed 

i n  order t o  obtain relations between the f l u e s  appearing i n  the  conserva- 

t i on  equatiomaad the gradients of the  physical quantities which are i n  a 

more convenient form fo r  numerical boundary layer calculations involving 

many species than those tha: would be obtained by the usual procedures. 

The results of t h i s  modified Chapmn-Enskog procedure are  given by equa- 

tions (3.20) through (3.26) with equation (3.17). 

combined with the conservation laws i n  Part  I V  and applied to the boundary 

Layer problem. 

through 4.21 with the definitions of Table I) can be seen t o  consist of 

f i rs t -order  d i f fe ren t ia l  equations plus a set algebmic equations which 

are l inear  i n  the f l ues .  This is a convenient form fo r  numerical calcula- 

tions.  

s imilar i ty  variable exists (eqs. (4.39) through (4.53)), the d i f fe ren t ia l  

equations become ordinary different ia l  equations, and the  formulation 

becomes par t icular ly  suited fo r  numerical calculations (which would involve 

only integration plus m t r i x  inversion). 

These results are then 

The result ing set  of boundary layer equations (eqs. 4.7 

When the equations are applied t o  a boundary Layer fo r  which a 

VI. Afmo- 

The author wishes particularly t o  thank,J. A. Fay fo r  his helpful 

Thanks a re  a l so  due t o  P. Sockol f o r  h i s  dis- cri t icism and guidance. 

cussion of the problem and t o  c. S. Su for  reading and commenting on 

the nrrnuscript . 
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APPENDIX A 

We s h a l l  now prove tha t  

and 

(A-1) 

( A.- 2)  

2 Much of t h e  transformation used follows chapter 9 of Chapman and Covling 

closely, and most of the notation is taken from there .  

From equation 10, section 4.4 of Chapman and Cowling, it i s  eas i ly  

ver i f ied t h a t  

r n  n r  
s i j  1 J ~ i j  J 1 
I ( .  .) = I.. ( .  . )  . 

By defini t ion the n’ th  Sonine Polynomial of order 3/2 i s  the coefficient 

of t i n  the expansion of: 
n * 

-5/2 .-xt/( 1-t) 
(1 - t )  

or: 

-5/2 -W; t/(l-t) 
(1 - t) e = S”(W?) tn , 

J n=O 

and 

(A-4) 

* 
C. F. chapman Cowling=! Section 7.5 
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ani? upon se t t ing  T G  t/(l - t), S I J/(1 - J), we have: 

'2 
I -wi - W. e ) gij bdb de dJi dV 

-1 -3 

(A-5) 

From equation (6) of Section 3.41 i n  Chapman and Cowling, we have 

C = ,Gi j  - Mj g..  C = G + Mi g . .  
4. +-ji ' o j  -ij "J1 

z mi/(mi + mj) ; where: Mi 

( m i  + m j )  ,Gij 1-1 ~ - j  1-1 J j '  

M = m /(mi + m.1 
j j  J 

I 1 
E m. C. + m.  C = m. C. + m. C 

and C. is  the velocity of a molecule of species i; defining so by 
-1 

G 3 G  - V  
-0 w i j  "0 ' 

we have 

V. = G 
*l -0 J 1  - M j  g.. ; xJ =so + Mi sji 

Next we define 
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* 
and we have 

w2+w?=B2+ Y 2  9 
1 J 0 

and 

(A.-6)  

where X is the deflection angle of the re la t ive  velocity i n  an encounter. 

Any function of the velocit ies of two molecules after encounter may be 

transformed into the corresponding function of the velocit ies before 

encounter by taking X = 0, (c . f .  Chapman and Cowling, p. 152, Section 9.3, 

equation 10 and below). 

From equation (7.3-13) of HCB we have 

Using the above definit ions and relations i n  equation (A.-5), we  get 

-A ' -w. ' 2  s 
(-IJi e -W. -1 e 1. 1 1 

-w% . 2 2  
(1 -J9)-5'2 (1 - t )  -5/2 *-3/(1 e -'i-'j w. e J 

'"J 

x gij bdb d e  d V  d& 
-0 

~~ 

( 2 )  * 
c.f .  equation 7, Section 3.41 of Chapmn and Cowling 
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Where 

Hence 

'2 2 = i .a2+ i . . J 2 +  2(M, M.)1/2 (r& y.o -8- e s# 4 0  * $ ' ) *  - 
2 0  2 +  r2-swi  + r w j  iJ J1 1 J  



Where 

- 
i = l + M i S + M r  
i j  j 

i 3 1 + M.S + M . Z  . 
j i  J 1 

Let 

so that a variable change from go t o  Tis equivalent to a change i n  

origin i n  the 8, space. 
' ', 

$:+ x 2 + s w i  '2  + T w j = i i j v  2 2 + i . .  x 2  - 
J 1  

r2+ j i j  Y 2 
i j  

- (M. M . / i .  .) ( rx  - S l ' )  (Zb) - S K I )  = i 
1 J 13 

where 

i - (Mi M j / i .  .)(S2 + T 2  - 2 S r  c o s x )  
j i  1J 

2 M.M.(S + r 2  - 2 sz C 0 . x )  
1 J  

= l + M . S + M i T  - 
J 1 + MiS + M.T 

J 

(1 + S ) ( 1  + r) - a . M . S T ( 1  -  COS^) - - 1 J  

J 
1 + MiS + M . r  

= @ - ai M .  S r ( 1  - cosx)f  /(1 - MjS - M i f )  , J 

or 
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. 

( M . / i .  .)(r Y - Sl') - 5 
4 293 J 1 J  - 

then 

- P ( M .  Ip: + M. P.) + (Mi M j ) 1 ' 2 q  
4 J 1 "J 

l 2  = M. 1 P2 - 2(M.  1 Mj)1/2 4 T o  -1 P. + Mi pf 'i 

8 = M. 29- 2 - 2(M. M . ) 1 ' 2 T * Z j  + M i F j  2 
3 3 1 3  

Then by equation 2 of Section 1.42 i n  Chapmn and Cowling, equation (A-8) 

can be rewritten i n  terms of these new variables as 
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I hence 

s i n  c e 

t i on  cind U i s  the uni t  tensor. 

Ip: Wand p. P a r e  odd f'unctions of ,i and ZP'Tis an  even f'unc- 
-1- - 3 -  - 4  

4 u 

I I 2 
pi tr: = (Mi M j / i .  .) ( rg  - S ) (r& - S z  ) J 1 J  

2 
= (Mi M . / i .  .) (T u r d  Y X + S2 - 2 S r  U d  X I 1 )  

J 1 J  

+ (l/i. .) {- M . r  1 -- Y r -  M j  S i x '  + (M.S 1 + M j I ) b / y  - cc- Yd? (A-11) 
1 J  

I 

L e t s b e  the unit vector i n  the plain of g . .  and g . .  which is  perpendicu- 
&A J 1  -J1 

lar t o  g . . ;  then w e  have 
Lr) J 1  

and K = K( X, 6 )  only, since once a, gji a r e  specified, K i s  completely 

determined. 

M - -  
Now we have 

( A.- 12) 

. 
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. 

. 

+ 2 &'K YcosX sinX 
4 4  

It is easy t o  see from Figure 1 that 

* 
and that 

We now have f r o m  equations ( l 5 - a )  and (l3-a) 

(A- 13 ) 

(A-14) 

( A-16) 

(A-17) 

and from e w t i o n s  (llc-a), (l5-a), and (164) 

H 0 
where -88 is  the divergence-less tensor, 

'5 y: 

* 
Note obvious tensor character of K, K,. The result is essent ia l ly  
obtained by evaluating 5 K i n  a part icular  coordinate system and 
then writing it down i n  a; invarient manner. 

-%E 
i n  Chapnan and Cowling's notation. 
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From equations (11-a), (17-a)) and (18-4, we g e t  

2 - r  
pi 'tpr de = [(Mi M./i2.) ( T  + S2 - 2 S r  I, -* "J J 1J  

= x J ( l / i .  .> [iji - j i j  - (Xj S -I- Mir) + 
w *  1 J  

. 

= J'J'(l/i. .) (1 - j i j  - cos K) 1:" de 
1 J  .E- 

Hence substituting equation (A-19) in to  equation ( A , - l o ) ,  we  arr ive a t  



. 

. 

I 

1 
1 

I 

I 

I 
I 
1 

i 
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From equations (2) and (3)  of Section 1.42, p. 22 of Chapman and Cowling, 

we have 

( A- 21) 

( A- 22) 

Integrating equation (A-x>) with respect t o  5 and using equations (A-21) 

and (A-22),  we get 

2 -.j. .2f 
U 3 5  (M. 1 J  M.)ll2 e (i. =J .)-5/2 (3 2 i [l - j i j  - cosX]J2)dc df L1 .(A-23) 

Comparing (A-23) with equation (14) of Section 9.31 of Chapman and Cowling, 

we see that 

where E is the H12 appearing i n  Chapman and Carling, end is the i 3  
sc r ip t  g used there. 

(4) of Section 9.31 and the definition of H12 (0) a n d g i j  (0), we see that 

Also, from the statement appearing below equation 

* 
Using equations (A-24) and (A-25) i n  equations (A-7) and canparison with 

( 5 )  and (2) of Section 9.3 or' Chapmn and Cowling show t h a t  
* 

* 
Also see the statement preceding (2).  

Note that our W .  is  Chapmn and Cowling's sc r ip t  $? j. Wk 

'"J 
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and upon equating coefficients of l i ke  powers of.-& and t, we have 

which i s  the first of the desired resul ts .  I n  exactly the  same way, we 

have 

-5/2T-3 ,(/[€I (0) - H . .  ( X ) ]  gij bd b d x  (A.-28) 
ii Sll 

= (1 4 - 5 1 2  (1 - t)  

I where 

and since 

d 2 +  Y 2 + s w ! ~ +  T W : = i . $ 2 + i j Y  2 - 
0 1 0  

I 

- 2(M. 1 Mj)'l2 (S& -0 + T$ - 0  .J) 

where 

ii 1 + Mi (S + T) ; i =- 1 + M~(S + T )  . 3 

We find upon set t ing 

y =  go - (Mi Mj) (SX' + rz)/ii ; 

(A-29) 

(A-30) 
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c . 

following exactly the same procedure as used above and comparing the 

res1d.s w5Ch those of Section 9.4 of Chaprnan and Cowling 

1 I. .(" r) = I..(. .) = 32 [ s (Wi) kli , s (Wi ) ,Wi  ij 
r n  1 r 2  n 2  

,-ij i 1 ~ i j  1 1  w 
(A- 31 1 
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APPENDIX B 

Calculation of Some Transport Properties for  Simple Cases 

1. T h e m 1  conductivity of a single-component mixture 

Consideration of the quantit ies defined by (3.19) through (3.23)shms 

tha t  

= O  I Aij = All 

Bij  - - Bll = 0 

Ei j  = Ell = 0 

Fij = Fll = OJ 

From equation (3 .26)  we have 

From e q ~ z t  i on (3 lr> we have 

or introducing the  t h e m 1  conductivity A ,  we have 



I -  . 
I *  

i 
I 
I 

j -  
i 
I 
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From equation (8.2-8) of HCB we have 

and i n  terms of this we hsve 

03-71 

which is equation ( 8 . 2 4 )  of HCB for the  th-1 conductivity of 

a single-component gas. 

Binary diffusion coefficient of two-component i s o t h e m l  mixture 

From equations (3.26) and (3.24) and (3.18 ), ;.re have 

2. 

From equation (3.13) w e  have 
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since c + c = 1, and n m 7 E j . 
O r  

1 2  1 1-1 -1 

From equation (7.4-3) of HCB, we have 

since D 

Comparing equations (B-10) and ( B - l l ) ,  we have 

= 0 (c.f. top p. 487 i n  HCB). 11 - 

(B-10) 

(B-11) 

(B-12) 

which i s  the  same as  equation (7.4-38) of HCB for  the binary diffb- 

sion coefficient of a two-component mixture. 
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APPENDIX c 

Eucken Correction 

W e  have mentioned a t  the end of Par t  I11 tha t  i n  order t o  apply 

the resu l t s  obtained above t o  polyatomic gases, it is necessary t o  

add a term t o  the expression for the heat flux. 

t h e  resul ts  of reference ( lawhere it is shown that i n  the "Eucken l i m i t " :  

This can be seen from 

is the heat flux that would  be observed i f  the gas were mom- Where L o n  

tomic and q is  the  actual  heat flux. Hence the term: 
*/. 

must be added t o  the expression (3.17) i n  order t o  make our resul ts  applica- 

b le  t o  polyatomic gases. 

I n  order t o  add this correction term i n  a way that is i n  the form of 

the resul ts  derived above, we shall introduce a new s e t  of flux-lilre 

quantities, gi? ( re lated t o  the f lux of internal energy) which a re  propor- 

3 T  We shall then use equation (3.26) t o  eliminate the - 3 T" t i o n s l  t o  - . a s  a5 
dependence of the e.. It is f'urther shown i n  reference (11) that: 

J 

and from HCB (eq. 7.4-38), We have 

(c-3) 
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Hence 

. 

L e t  us require tha t  e.  satisfy the relation: 
-J 

This is  sa t i s f ied  by se t t ing  

and i f  we define H .  by 
J 

we have using equation ( 3 . 2 6 )  t o  eliminate - 3 
a 2  

from equation (c-7) 

Hence adding ( C - 2 )  t o  the expression (3.17) and using (c-6), we have 
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Equations (C-8), ( C - 9 ) ,  and (C-10) now bring i n  Eucken correction com- 

pletely.  
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